
Package: SimSeq (via r-universe)
September 16, 2024

Type Package

Title Nonparametric Simulation of RNA-Seq Data

Version 1.4.0

Date 2015-11-22

Author Samuel Benidt

Maintainer Samuel Benidt <sgbenidt@gmail.com>

Depends R (>= 2.10.0)

Imports fdrtool

Description RNA sequencing analysis methods are often derived by
relying on hypothetical parametric models for read counts that
are not likely to be precisely satisfied in practice. Methods
are often tested by analyzing data that have been simulated
according to the assumed model. This testing strategy can
result in an overly optimistic view of the performance of an
RNA-seq analysis method. We develop a data-based simulation
algorithm for RNA-seq data. The vector of read counts simulated
for a given experimental unit has a joint distribution that
closely matches the distribution of a source RNA-seq dataset
provided by the user. Users control the proportion of genes
simulated to be differentially expressed (DE) and can provide a
vector of weights to control the distribution of effect sizes.
The algorithm requires a matrix of RNA-seq read counts with
large sample sizes in at least two treatment groups. Many
datasets are available that fit this standard.

License GPL (>= 2)

NeedsCompilation no

Date/Publication 2015-11-23 12:33:58

Repository https://sbenidt.r-universe.dev

RemoteUrl https://github.com/cran/SimSeq

RemoteRef HEAD

RemoteSha 256a72d0b3cd24ff68541624ce35a6e9182cf450

1

2 SimSeq-package

Contents
SimSeq-package . 2
CalcPvalWilcox . 3
kidney . 4
SimData . 8
SortData . 12

Index 14

SimSeq-package Nonparametric Simulation of RNA-Seq Data

Description

RNA sequencing analysis methods are often derived by relying on hypothetical parametric models
for read counts that are not likely to be precisely satisfied in practice. Methods are often tested by
analyzing data that have been simulated according to the assumed model. This testing strategy can
result in an overly optimistic view of the performance of an RNA-seq analysis method. We develop
a data-based simulation algorithm for RNA-seq data. The vector of read counts simulated for a given
experimental unit has a joint distribution that closely matches the distribution of a source RNA-seq
dataset provided by the user. Users control the proportion of genes simulated to be differentially
expressed (DE) and can provide a vector of weights to control the distribution of effect sizes. The
algorithm requires a matrix of RNA-seq read counts with large sample sizes in at least two treatment
groups. Many datasets are available that fit this standard.

Details

Package: SimSeq
Type: Package
Version: 1.4.0
Date: 2015-11-22
License: GPL-2

SimSeq performs data based simulation of RNA-Seq data creating a dataset with a known list of DE
and EE genes. The core function that implements of the methodology of SimSeq is the SimData
function.

Author(s)

Samuel Benidt

Maintainer: Samuel Benidt <sgbenidt@gmail.com>

CalcPvalWilcox 3

CalcPvalWilcox Calculate P-values of Differential Expression

Description

A function called within SimData. Calculates the P-value of differential expression for each gene
under either Wilcoxin signed rank test (paired data) or rank sum test (unpaired data). The vector of
differences used in the test is based off of the log of the counts for each gene plus 1 divided by their
respective multiplicative normalization factors provided by the user.

Usage

CalcPvalWilcox(counts, treatment, replic = NULL, sort.method,
sorted = FALSE, norm.factors, exact = FALSE)

Arguments

counts A matrix of counts where each row specifies a gene and each column specifies
a replicate.

treatment A vector specifying the treatment group for each column of the counts matrix.
Only two treatment groups of either paired or unpaired data are allowed.

replic A vector specifying the replicate for each column of the counts matrix when
there is paired data; optional if data is unpaired.

sort.method Character vector specifying one of "unpaired" or "paired", depending on the
structure of the data.

sorted logical vector specifying whether data has already gone through SortData func-
tion. Defaults to FALSE.

norm.factors A positive numeric vector of multiplicative normalization factors for each col-
umn of the counts matrix.

exact Specifies whether an exact signed rank test (paired) or exact ranksum test (un-
paired) should be used.

Value

probs: a vector of p-values of differential expression for each gene.

Author(s)

Samuel Benidt <sgbenidt@gmail.com>

4 kidney

kidney Kidney Renal Clear Cell Carcinoma [KIRC] RNA-Seq data

Description

The KIRC RNA-seq dataset from The Cancer Genome Atlas containing 20531 genes and 72 paired
columns of data with rows corresponding to genes and columns corresponding to replicates; replic
vector specifies replicates and treatment vector specifies non-tumor and tumor group samples re-
spectively within replicate.

The maximum possible sample size that can be simulated with this dataset is 36 replicates in each
of two treatment groups. However, it is recommended to use a sample size of 20 or lower for
simulation studies to ensure each simulated dataset is sufficiently different from the other simulated
datasets.

Disclaimer: The version of the KIRC dataset provided is: unc.edu_KIRC.IlluminaHiSeq_RNASeqV2.Level_3.1.5.0.

The Cancer Genome Atlas updates its datasets periodically. The latest version of the KIRC dataset
can always be downloaded from: https://tcga-data.nci.nih.gov/tcga/.

Please appropriately reference the source below when using this dataset. The source code used to
assemble this dataset is provided below.

Usage

data(kidney)

Format

List containing:

• counts: matrix of RNA-seq data for 20531 sampled genes and 72 paired columns from indi-
viduals with Kidney Renal Clear Cell Carcinoma.

• replic: vector detailing which column in counts matrix belongs to each individual.

• treatment: vector detailing whether each column in counts matrix is a non-tumor or tumor
sample.

Source

https://tcga-data.nci.nih.gov/tcga/

The Cancer Genome Atlas Research Network (2013). Comprehensive molecular characterization
of clear cell renal cell carcinoma. Nature, 499(7456), 43-49.

Examples

data(kidney)

Not run:
Source code used to assemble KIRC dataset

kidney 5

load in SimSeq package for sorting counts matrix
library(SimSeq)

htmlToText function used to scrape barcode data from uuid
htmlToText <- function(input, ...) {

###---PACKAGES ---###
library(RCurl)
library(XML)

###--- LOCAL FUNCTIONS ---###
Determine how to grab html for a single input element
evaluate_input <- function(input) {
if input is a .html file
if(file.exists(input)) {

char.vec <- readLines(input, warn = FALSE)
return(paste(char.vec, collapse = ""))

}

if input is html text
if(grepl("</html>", input, fixed = TRUE)) return(input)

if input is a URL, probably should use a regex here instead?
if(!grepl(" ", input)) {

downolad SSL certificate in case of https problem
if(!file.exists("cacert.perm")) {
download.file(url = "http://curl.haxx.se/ca/cacert.pem", destfile = "cacert.perm")
}
return(getURL(input, followlocation = TRUE, cainfo = "cacert.perm"))

}

return NULL if none of the conditions above apply
return(NULL)

}

convert HTML to plain text
convert_html_to_text <- function(html) {

doc <- htmlParse(html, asText = TRUE)
text <- xpathSApply(doc, paste0("//text()",

"[not(ancestor::script)][not(ancestor::style)]",
"[not(ancestor::noscript)][not(ancestor::form)]"), xmlValue)

return(text)
}

format text vector into one character string
collapse_text <- function(txt) {

return(paste(txt, collapse = " "))
}

###--- MAIN ---###
STEP 1: Evaluate input
html.list <- lapply(input, evaluate_input)

STEP 2: Extract text from HTML

6 kidney

text.list <- lapply(html.list, convert_html_to_text)

STEP 3: Return text
text.vector <- sapply(text.list, collapse_text)
return(text.vector)

}

Specify path name for folder containing raw counts for each sample
mainDir <- getwd()
folder.path <- "unc.edu_KIRC.IlluminaHiSeq_RNASeqV2.Level_3.1.5.0"

Determine list of files containing summarized raw counts
file.list <- dir(file.path(mainDir, folder.path))
keep <- grepl("genes.results", file.list)
file.list <- file.list[keep]

Create summarized count matrix.
Get n.row and n.col for summarized count matrix number of genes in first
sample and number of total samples from file.list

file.temp <- file.path(mainDir, folder.path, file.list[1])
n.row <- nrow(read.table(file = file.temp, header = TRUE))
n.col <- length(file.list)

initialize counts matrix
counts <- matrix(NA, nrow = n.row, ncol = n.col)

get gene id's
gene.id <- read.table(file.temp, header = TRUE, stringsAsFactors = FALSE)$gene_id

read in raw read counts from file.list
for(i in 1:n.col){

file.temp <- file.path(mainDir, folder.path, file.list[i])
counts[, i] <- read.table(file.temp, header = TRUE)$raw_count

}

Data was summarized using RSEM software which produces non_integer
counts for ambiguous reads. Counts are rounded as a preprocessing
step.
counts <- round(counts)

Cast counts matrix as integer type
counts <- matrix(as.integer(counts), nrow = nrow(counts), ncol = ncol(counts))

Get uuid's for each sample
uuid <- substr(file.list, start = 9, stop = 44)

Create urls from uuid list
urls <- paste(rep("https://tcga-data.nci.nih.gov/uuid/uuidws/mapping/xml/uuid/",

length(uuid)), uuid, sep = "")

Scrape barcodes from urls
l <- length(urls)

kidney 7

barcodes <- vector("character", l)
for(i in 1:l){

barcodes[i] <- htmlToText(urls[i])
}

barcodes <- substr(barcodes, start = 1, stop = 28)

Get metadata on which samples were taken from each individual,
tumor type of sample, etc. from barcodes for each sample
metadata <- data.frame(barcodes, stringsAsFactors = FALSE)

Study Participant
metadata$participant <- substr(barcodes, start = 9, stop = 12)

Sample type code. See:
https://tcga-data.nci.nih.gov/datareports/codeTablesReport.htm?codeTable=Sample%20type
for full list of codes and details on TCGA barcodes.
01: Primary Solid Tumor
02: Recurrent Solid Tumor
05: Additional New Primary
06: Metastatic Tumor
11: Solid Tissue Normal
metadata$type <- substr(barcodes, start = 14, stop = 15)

Only keep Primary Solid Tumor and Solid Tissue Normal
keep.metadata <- metadata$type == "01" | metadata$type == "11"
metadata <- metadata[keep.metadata,]
counts <- counts[, keep.metadata]

Code from 01 to Tumor and 11 to Non-Tumor for easy identifiability
metadata$tumor <- "Non-Tumor"
metadata$tumor[metadata$type == "01"] <- "Tumor"

tag participant, type, and tumor as factors
metadata$participant <- as.factor(metadata$participant)
metadata$type <-as.factor(metadata$type)
metadata$tumor <- as.factor(metadata$tumor)

Sort and subset down to paired data
sorting <-

SortData(counts, treatment = metadata$tumor,
replic = metadata$participant, sort.method = "paired")$sorting

counts <- counts[, sorting]
metadata <- metadata[sorting,]
metadata$participant <- factor(metadata$participant)

Add in attributes of counts matrix
dimnames(counts) <- list(gene.id, metadata$barcodes)
attr(counts, "uuid") <- uuid

kidney <- vector("list", 3)

8 SimData

kidney[[1]] <- counts
kidney[[2]] <- metadata$participant
kidney[[3]] <- metadata$tumor
names(kidney) <- c("counts", "replic", "treatment")

###Save file
save(kidney, file = "kidney.rda")

End(Not run)

SimData SimData

Description

Given a matrix of RNA-seq data with large samples sizes in at least two treatment groups, SimData
simulates a new matrix of RNA-seq data with a known list of differentially expressed (DE) and
equivalently expressed (EE) genes from the original data.

Usage

SimData(counts, treatment, replic = NULL, sort.method, k.ind,
n.genes = NULL, n.diff = NULL, norm.factors = NULL,
samp.independent = FALSE, genes.select = NULL, genes.diff = NULL, switch.trt = FALSE,
probs = NULL, weights = NULL, exact = FALSE, power = 1)

Arguments

counts A matrix of counts where each row specifies a gene and each column specifies
a replicate.

treatment A vector specifying the treatment group for each column of the counts matrix.
Only two treatment groups of either paired or unpaired data are allowed.

replic A vector specifying the replicate for each column of the counts matrix when
there is paired data; optional if data is unpaired.

sort.method One of either "paired" or "unpaired", depending on the structure of the counts
matrix.

k.ind The number of experimental units to be simulated for each treatment group.

n.genes The number of genes to be subsetted from the counts matrix in the simulation.
Must be less than the total number of rows in the counts matrix and greater than
n.diff. Optional if genes.select vector is specified.

n.diff The number of genes simulated to be differentially expressed. Must be less than
n.genes. Optional if genes.diff vector is specified.

norm.factors A positive numeric vector of multiplicative normalization factors for each col-
umn of the counts matrix. Will default to CalcNormFactors function from the
package edgeR with method = "TMM".

SimData 9

samp.independent

Should columns be resampled for each gene. (Defaults to FALSE - setting to
TRUE is not recommended.)

genes.select A vector specifying genes to be subsetted from the counts matrix in the simula-
tion. Can be either a logical vector or a numeric vector indicating the rows of
the counts matrix to be used. Optional if n.genes is specified.

genes.diff A vector specifying genes to be differentially expressed in the simulation. Genes
selected to be differentially expressed must be a subset of the genes selected in
the genes.select vector. Can be either logical vector with length equal to genes
selected or a numeric vector indicating the rows of the counts matrix to be used.
Optional if n.diff is specified.

switch.trt Logical specifying which treatment group should be sampled from for EE genes.
Default is first treatment group.

probs Optional vector specifying the p-value of differential expression for each gene
to be used in the estimate of empirical Bayes probability for each gene. If not
provided and weights are not specified, SimData will perform either a signed
rank test (paired case) or a rank sum test (unpaired) case for each gene in the
counts matrix.

weights Optional vector specifying weights to be used for sampling which genes are to
be differentially expressed in the simulation. If null, weights will be calculated
using the fdrtool function from the package ’fdrtool’ to calculate one minus
local fdr. If desired, the sampling of differentially expressed genes can be done
without respect to any weights by providing a vector of ones.

exact Specifies whether an exact signed rank test (paired) or exact ranksum test (un-
paired) should be used.

power Transorms the weights for each gene by raising each weights to some power.
Must be greater than 0. Default is set to 1.

Details

SimData simulates an RNA-seq matrix of counts from a large source RNA-sequence dataset using
a resampling based approach. If you use the Kidney Cancer (KIRC) dataset from the The Cancer
Genome Atlas as the source RNA-seq counts matrix in the SimData function, please cite The Cancer
Genome Atlas Research Network (2013) in any publications.

Value

List containing:

counts matrix of simulated RNA-seq data with known list of DE and EE genes.

treament a numeric vector specifying the treatment group structure in the new simulated
counts matrix.

genes.subset all genes included in the simulated matrix. The i-th entry corresponds to the i-th
row of the simulated counts matrix.

DE.genes vector of genes used for differential expression in the simulated counts matrix.

DE.ind logical vector indicating which genes are differentially expressed in the simu-
lated counts matrix.

10 SimData

col vector of lenght 3*k.ind specifying which columns were used in the simulation.
The first k.ind columns were used to simulate the first treatment group. The last
2*k.ind columns were used to simulate the second treatment group. If switch.trt
equals TRUE, then the first 2*k.ind columns were used to simulate the first
treatment group and the last k.ind columns were used to simulate the second
treatment group.

Author(s)

Samuel Benidt <sgbenidt@gmail.com>

Source

Benidt, S., and Nettleton, D. (2015). SimSeq: a nonparametric approach to simulation of RNA-
sequence datasets. Bioinformatics. 31, 2131-2140.

The Cancer Genome Atlas Research Network (2013). Comprehensive molecular characterization
of clear cell renal cell carcinoma. Nature, 499(7456), 43-49.

https://tcga-data.nci.nih.gov/tcga/

Examples

data(kidney)
counts <- kidney$counts # Matrix of read counts from KIRC dataset
replic <- kidney$replic # Replic vector indicating paired columns
treatment <- kidney$treatment # Treatment vector indicating Non-Tumor or Tumor columns

nf <- apply(counts, 2, quantile, 0.75)

library(fdrtool)

Not run:

Example 1: Simulate Matrix with 1000 DE genes and 4000 EE genes
data.sim <- SimData(counts = counts, replic = replic, treatment = treatment,

sort.method = "paired", k.ind = 5, n.genes = 5000, n.diff = 1000,
norm.factors = nf)

Example 2: Calculate weights vector beforehand to save run time in
repeated simulations
sort.list <- SortData(counts = counts, treatment = treatment, replic = replic,

sort.method = "paired", norm.factors = nf)
counts <- sort.list$counts
replic <- sort.list$replic
treatment <- sort.list$treatment
nf <- sort.list$norm.factors

probs <- CalcPvalWilcox(counts, treatment, sort.method = "paired",
sorted = TRUE, norm.factors = nf, exact = FALSE)

weights <- 1 - fdrtool(probs, statistic = "pvalue", plot = FALSE, verbose = FALSE)$lfdr

data.sim <- SimData(counts = counts, replic = replic, treatment = treatment,

SimData 11

sort.method = "paired", k.ind = 5, n.genes = 5000, n.diff = 1000,
weights = weights, norm.factors = nf)

Example 3: Specify which genes you want to use in the simulation

Randomly sample genes or feed in the exact genes you wish to use
genes.diff <- sample(1:nrow(counts), size = 1000, prob = weights)
genes <- c(sample(1:nrow(counts)[-genes.diff], 4000), genes.diff)

data.sim <- SimData(counts = counts, replic = replic, treatment = treatment,
sort.method = "paired", k.ind = 5, genes.select = genes,
genes.diff = genes.diff, weights = weights, norm.factors = nf)

Example 4: Simulate matrix with DE genes having log base 2 fold change greater than 1

add one to counts matrix to avoid infinities when taking logs
tumor.mean <- rowMeans(log2((counts[, treatment == "Tumor"] + 1) %*%

diag(1/nf[treatment == "Tumor"])))
nontumor.mean <- rowMeans(log2((counts[, treatment == "Non-Tumor"] + 1) %*%

diag(1/nf[treatment == "Non-Tumor"])))

lfc <- tumor.mean - nontumor.mean
weights.zero <- abs(lfc) < 1
weights[weights.zero] <- 0

data.sim <- SimData(counts = counts, replic = replic, treatment = treatment,
sort.method = "paired", k.ind = 5, n.genes = 5000, n.diff = 1000,
weights = weights, norm.factors = nf)

Example 5: Simulate three treatment groups:
3 Different types of Differential Expression Allowed
First Group Diff, Second and Third group Equal
Second Group Diff, First and Third group Equal
Third Group Diff, First and Second group Equal

k <- 5 # Sample Size in Each treatment group

Sample DE genes beforehand
N <- nrow(counts)
genes.de <- sample(1:N, size = 1000, prob = weights) # Sample all DE genes
DE1 <- genes.de[1:333] # Sample DE genes with first trt diff
DE2 <- genes.de[334:666] # Sample DE genes with sec trt diff
DE3 <- genes.de[667:1000] # Sample DE genes with third trt diff
EE <- sample((1:N)[-genes.de], size = 4000) #Sample EE genes

genes.tot <- c(EE, genes.de)
genes.de1 <- union(DE2, EE) #Assign DE genes for first sim
genes.de2 <- union(DE2, DE3) #Assign DE genes for second sim

data.sim1 <- SimData(counts = counts, replic = replic, treatment = treatment,
sort.method = "paired", k.ind = k, genes.select = genes.tot,
genes.diff = genes.de1, weights = weights, norm.factors = nf)

12 SortData

#remove pairs of columns used in first simulation
cols.rm <- c(data.sim1$col[1:(2*k)], data.sim1$col[1:(2*k)] + 1)
counts.new <- counts[, -cols.rm]
nf.new <- nf[-cols.rm]
replic.new <- replic[-cols.rm]
treatment.new <- treatment[-cols.rm]

Set switch.trt = TRUE for second sim
data.sim2 <- SimData(counts = counts.new, replic = replic.new, treatment = treatment.new,

sort.method = "paired", k.ind = k, genes.select = genes.tot,
genes.diff = genes.de2, weights = weights, norm.factors = nf.new,
switch.trt = TRUE)

Remove first k.ind entries from first sim and combine two count matrices
counts.sim <- cbind(data.sim1$counts[, -(1:k)], data.sim2$counts)

treatment group levels for simulated matrix
trt.grp <- rep(NA, 5000)
trt.grp[is.element(data.sim1$genes.subset, DE1)] <- "DE_First_Trt"
trt.grp[is.element(data.sim1$genes.subset, DE2)] <- "DE_Second_Trt"
trt.grp[is.element(data.sim1$genes.subset, DE3)] <- "DE_Third_Trt"
trt.grp[is.element(data.sim1$genes.subset, EE)] <- "EE"

End(Not run)

SortData SortData

Description

A function called in SimData used to trim and sort the matrix of counts provided.

Usage

SortData(counts, treatment, replic = NULL, sort.method, norm.factors = NULL)

Arguments

counts A matrix of counts where each row specifies a gene and each column specifies
a replicate.

treatment A vector specifying the treatment group for each column of the counts matrix.
Only two treatment groups of either paired or unpaired data are allowed.

replic A vector specifying the replicate for each column of the counts matrix when
there is paired data; optional if data is unpaired.

sort.method Character vector specifying one of "unpaired" or "paired", depending on the
structure of the data.

norm.factors An optional positive numeric vector of multiplicative normalization factors for
each column of the counts matrix.

SortData 13

Value

List containing:

counts sorted and trimmed matrix of counts.

replic sorted and trimmed replic vector.

treatment sorted and trimmed treatment vector.

norm.factors sorted and trimmed offset vector.

sorting sorting vector used to sort and trim.

Author(s)

Samuel Benidt <sgbenidt@gmail.com>

Index

∗ datasets
kidney, 4

CalcPvalWilcox, 3

kidney, 4

SimData, 8
SimSeq (SimSeq-package), 2
SimSeq-package, 2
SortData, 12

14

	SimSeq-package
	CalcPvalWilcox
	kidney
	SimData
	SortData
	Index

